Single amino acid residue changes in subsite -1 of inulosucrase from Lactobacillus reuteri 121 strongly influence the size of products synthesized.

نویسندگان

  • Lukasz K Ozimek
  • Slavko Kralj
  • Thijs Kaper
  • Marc J E C van der Maarel
  • Lubbert Dijkhuizen
چکیده

Bacterial fructansucrase enzymes belong to glycoside hydrolase family 68 and catalyze transglycosylation reactions with sucrose, resulting in the synthesis of fructooligosaccharides and/or a fructan polymer. Significant differences in fructansucrase enzyme product specificities can be observed, i.e. in the type of polymer (levan or inulin) synthesized, and in the ratio of polymer versus fructooligosaccharide synthesis. The Lactobacillus reuteri 121 inulosucrase enzyme produces a diverse range of fructooligosaccharide molecules and a minor amount of inulin polymer [with beta(2-1) linkages]. The three-dimensional structure of levansucrase (SacB) of Bacillus subtilis revealed eight amino acid residues interacting with sucrose. Sequence alignments showed that six of these eight amino acid residues, including the catalytic triad (D272, E523 and D424, inulosucrase numbering), are completely conserved in glycoside hydrolase family 68. The other three completely conserved residues are located at the -1 subsite (W271, W340 and R423). Our aim was to investigate the roles of these conserved amino acid residues in inulosucrase mutant proteins with regard to activity and product profile. Inulosucrase mutants W340N and R423H were virtually inactive, confirming the essential role of these residues in the inulosucrase active site. Inulosucrase mutants R423K and W271N were less strongly affected in activity, and displayed an altered fructooligosaccharide product pattern from sucrose, synthesizing a much lower amount of oligosaccharide and significantly more polymer. Our data show that the -1 subsite is not only important for substrate recognition and catalysis, but also plays an important role in determining the size of the products synthesized.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of conserved inulosucrase residues in the reaction and product specificity of Lactobacillus reuteri inulosucrase.

The probiotic bacterium Lactobacillus reuteri 121 produces two fructosyltransferase enzymes, a levansucrase and an inulosucrase. Although these two fructosyltransferase enzymes share high sequence similarity, they differ significantly in the type and size distribution of fructooligosaccharide products synthesized from sucrose, and in their activity levels. In order to examine the contribution o...

متن کامل

The levansucrase and inulosucrase enzymes of Lactobacillus reuteri 121 catalyse processive and non-processive transglycosylation reactions.

Bacterial fructosyltransferase (FTF) enzymes synthesize fructan polymers from sucrose. FTFs catalyse two different reactions, depending on the nature of the acceptor, resulting in: (i) transglycosylation, when the growing fructan chain (polymerization), or mono- and oligosaccharides (oligosaccharide synthesis), are used as the acceptor substrate; (ii) hydrolysis, when water is used as the accep...

متن کامل

Biochemical and molecular characterization of a levansucrase from Lactobacillus reuteri.

Lactobacillus reuteri strain 121 employs a fructosyltransferase (FTF) to synthesize a fructose polymer [a fructan of the levan type, with beta(2-->6) linkages] from sucrose or raffinose. Purification of this FTF (a levansucrase), and identification of peptide amino acid sequences, allowed isolation of the first Lactobacillus levansucrase gene (lev), encoding a protein (Lev) consisting of 804 am...

متن کامل

Rational transformation of Lactobacillus reuteri 121 reuteransucrase into a dextransucrase.

Glucansucrase or glucosyltransferase (GTF) enzymes of lactic acid bacteria display high sequence similarity but catalyze synthesis of different alpha-glucans (e.g., dextran, mutan, alternan, and reuteran) from sucrose. The variations in glucosidic linkage specificity observed in products of different glucansucrase enzymes appear to be based on relatively small differences in amino acid sequence...

متن کامل

Kinetic properties of an inulosucrase from Lactobacillus reuteri 121.

Inulosucrases catalyze transfer of a fructose moiety from sucrose to a water molecule (hydrolysis) or to an acceptor molecule (transferase), yielding inulin. Bacterial inulin production is rare and a biochemical analysis of inulosucrase enzymes has not been reported. Here we report biochemical characteristics of a purified recombinant inulosucrase enzyme from Lactobacillus reuteri. It displayed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The FEBS journal

دوره 273 17  شماره 

صفحات  -

تاریخ انتشار 2006